Bacterial biostimulants for climate smart agriculture practices: Mode of action, effect on plant growth and roadmap for commercial products

Author:

Singh Ravinder1ORCID,Kaur Sehijpreet2,Bhullar Sukhveer S.2,Singh Hardeep3,Sharma Lakesh K.1

Affiliation:

1. Soil, Water, and Ecosystem Sciences Department University of Florida Gainesville Florida USA

2. Department of Agronomy University of Florida Gainesville Florida USA

3. Department of Agronomy, West Florida Research and Education Center University of Florida Jay Florida USA

Abstract

AbstractAmidst the global food shortage and the global climate change challenge, there is an urgent need to double food production by 2050. However, the modern crop production methods, including the use of fertilizers and pesticides, have adverse environmental consequences, exacerbating the climate crisis. To address this challenge, a transition to sustainable agriculture is imperative that can harmonize the issue. Biostimulants offer an eco‐friendly solution, especially bacterial biostimulants centred on plant growth‐promoting rhizobacteria (PGPRs). These biostimulants hold the promise of offering environmentally sustainable solutions to enhance crop productivity. The adoption of PGPR‐based biostimulants in agriculture has gained significant momentum in agricultural research. PGPRs enhance plant growth through multifaceted mechanisms. This review delves into the various modes of action employed by PGPRs to improve plant growth, including their impact on nutrient availability (such as nitrogen fixation and mineral solubilization) and stress mitigation. In addition, the practical implication of PGPR strains in field research has been discussed extensively. Besides, the review outlines the roadmap for commercializing PGPR‐based biostimulants and discusses the associated challenges and limitations. A balanced perspective on the practical implementation of PGPRs in modern agriculture is presented. Exploration of future strategies and directions rounds out the review, emphasizing the necessity of a comprehensive approach to address research gaps and unlock the full potential of PGPR‐based biostimulants for sustainable agriculture. In conclusion, this review underscores the applicability of PGPR‐based biostimulants as an innovative solution to address the current food crisis in the context of climate change.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3