Influence of autumn soil moisture over Kalimantan Island on following winter precipitation over southern China

Author:

Qiao Zehua12ORCID,Zhu Siguang12ORCID,He Jiarong12

Affiliation:

1. Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/International Joint Research Laboratory of Climate and Environment Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC‐FEMD) Nanjing University of Information Science & Technology (NUIST) Nanjing China

2. School of Atmospheric Sciences Nanjing University of Information Science & Technology (NUIST) Nanjing China

Abstract

AbstractThe atmospheric activity on Kalimantan Island (KI) is important for regulating regional weather and climate. This study investigates the effect of autumn soil moisture over KI on following winter precipitation over southern China (SC) during 1968–2014. The results show that the autumn soil moisture over the KI has a significant negative correlation with subsequent winter precipitation over SC. The correlation remains statistically significant when using partial correlation to filter out the concurrent influences of El Niño–Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) signals. The soil moisture anomalies over KI, which initiate in the autumn and persist into the winter, lead to changes in local thermal conditions and atmospheric temperature. Negative soil moisture anomalies over KI will result in positive heating anomalies of the atmosphere above the land surface. This atmospheric heating causes ascending motion, which creates a semi‐closed vertical circulation from KI to the tropical northwest Pacific. This vertical circulation would strengthen the northwest Pacific anticyclone and weaken the East Asian winter monsoon (EAWM). Consequently, southwesterly water vapour flux prevails in the SC as well as the South China Sea (SCS), facilitating the transportation of more water vapour into the SC. Simultaneously, water vapour convergence in the SC. Collectively, these contribute to an addition of precipitation over SC.

Funder

National Natural Science Foundation of China

Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3