Glo3DHydroClimEventSet(v1.0): A global‐scale event set of hydroclimatic extremes detected with the 3D DBSCAN‐based workflow (1951–2022)

Author:

Liu Zhenchen1ORCID,Zhou Wen1

Affiliation:

1. Key Laboratory of Polar Atmosphere‐ocean‐ice System for Weather and Climate, Ministry of Education & Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences Fudan University Shanghai China

Abstract

AbstractThe emergency of global‐scale hydroclimatic extremes (i.e., meteorological droughts, extreme precipitations, heat waves and cold surges) and associated compound events has recently drawn much attention. A global‐scale unified and comprehensive event set with accurate information on spatiotemporal evolutions is necessary for better mechanism understanding and reliable predictions in sequential studies. Accordingly, this manuscript describes the first‐generation global event‐based database of hydroclimatic extremes produced with the newly proposed 3D (longitude–latitude–time) DBSCAN‐based workflow of event detection. The short name of this database is Glo3DHydroClimEventSet(v1.0), which is obtained from the FigsharePlus webpage (https://doi.org/10.25452/figshare.plus.23564517). The 1951–2022 ERA5‐based multiscale and multi‐threshold daily running datasets of precipitation and near‐surface air temperature are calculated and employed as the input data. A comprehensive event set of hydroclimate extremes is the output of the 3D DBSCAN‐based workflow. From perspectives of spatiotemporal evolutions, this event‐based database is also measured and attached with metric information. For case‐based validation, some recently reported hydroclimatic extremes (e.g., the 2020 summertime flood‐inducing Yangtze River extreme precipitation event) are employed and accurately detected in the Glo3DHydroClimEventSet(v1.0) database. Meanwhile, global‐scale spatiotemporal distributions are preliminarily analysed. For example, global‐scale event counts of extreme heatwaves displayed an increasing tendency since 2005, with a rapid increase after 2010. To sum up, this Glo3DHydroClimEventSet(v1.0) database may facilitate new scientific achievements concerning event‐based hydroclimatic extremes, especially in communities of atmosphere, hydrology, natural hazards and associated socioeconomics.

Funder

EarthLab, University of Washington

Publisher

Wiley

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3