Root architecture, root biomass and nutrient cycling in a mixed‐species agroforestry system

Author:

Bai Shahla Hosseini1ORCID,Muqaddas Bushra1,Trueman Stephen J.1,Wilson Rachele12,Keller Alexander3,Shapcott Alison2,Hannet Godfrey4,Farrar Michael B.2ORCID,Komolong Birte5,Wallace Helen M.1

Affiliation:

1. Centre for Planetary Health and Food Security, School of Environment and Science Griffith University Nathan Australia

2. Centre for Bioinnovation University of the Sunshine Coast Maroochydore Australia

3. Fakultät für Biologie Ludwig‐Maximilians‐Universität München Munich Germany

4. National Agricultural Research Institute Islands Regional Centre—Keravat Kokopo Papua New Guinea

5. National Agricultural Research Institute, Head Office Lae Papua New Guinea

Abstract

AbstractUnderstanding root development in soil profiles of agroforestry systems is challenging. It is uncertain to what extent the proximity of cash crops, such as cocoa and coffee, to shade trees reduces nutrient concentrations in the topsoil and whether the cash crops continue to develop fine roots in the topsoil when they are planted in close proximity to shade trees. We aimed to investigate micro‐ and macro‐nutrient concentrations in the soil profile and understand root architecture using a novel DNA metabarcoding approach in an agroforestry system where cocoa and coffee were interplanted with a shade tree, canarium. Soil and root samples were collected from (1) cocoa‐only, (2) cocoa‐canarium, (3) canarium‐only positions in a cocoa plantation, (4) coffee‐only, (5) coffee‐canarium and (6) canarium‐only positions in a coffee plantation. Proximity of shade trees did not limit nutrient concentrations for cash crops. Topsoil concentrations of total N (TN: 0.59% and 0.69%), phosphorus (P: 7.28 and 6.65 mg/kg), potassium (K: 360 and 755 mg/kg) and calcium (Ca: 1865 and 1044 mg/kg) under cocoa and coffee trees, respectively, did not differ significantly from those under the corresponding canarium trees. Soil TN, K and Ca concentrations were well above minimum required concentrations under both cocoa and coffee. DNA metabarcoding showed that canarium trees occupied deeper rooting zones (30–80 cm soil depth) than cocoa and coffee trees (0–30 cm soil depth). DNA metabarcoding demonstrated greater root colonisation of the topsoil by cocoa and coffee than canarium, suggesting that canarium had the potential to extract nutrients from deeper soil layers. Soil Ca concentrations were associated with cocoa root biomass whereas soil NO3‐N concentrations were associated with coffee root biomass. Our study highlighted the value of selecting suitable shade trees that maintain soil nutrient concentrations for cash crops. Furthermore, DNA metabarcoding can facilitate root distribution studies in complex agroforestry systems, thus providing insights into appropriate tree‐planting designs.

Funder

Australian Centre for International Agricultural Research

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3