Thermoeconomic analysis of a novel configuration of a biomass‐powered organic Rankine cycle for residential application with consideration the effect of battery energy storage

Author:

Ehyaei Mehdi Ali12ORCID,Heberle Florian1,Brüggemann Dieter1

Affiliation:

1. Chair of Engineering Thermodynamics and Transport Processes (LTTT), Center of Energy Technology (ZET) University of Bayreuth Bayreuth Germany

2. Department of Mechanical Engineering, Pardis Branch Islamic Azad University Pardis Tehran Iran

Abstract

AbstractIn this article, the energy, exergy, and economic analysis of an organic Rankine cycle (ORC) system powered by biogas to provide electricity, heating, and cooling loads for a residential building in Munich city is investigated. Two methods have been proposed to meet the heating and cooling needs of the residential building. In the first method, heating and cooling needs are provided by a heat pump and mechanical refrigeration (System I), and in the second method, these needs are provided by a radiator and absorption refrigeration cycle (System II). In both modes of this system, the effects of battery energy storage (BES) have been analyzed for peak shaving. The working method of this research is that the residential building's electricity, heating, and cooling needs are calculated by Homer and Carrier software, respectively. Engineering equation solver software models the main local power generation system. A new method has been proposed to select the required number of units to meet the needs of the building with and without BES. The results showed that for System I with and without BES, 3 and 1 ORC units with a nominal power of 2 kW can meet all the needs of the building, respectively. In contrast, for System II, the number of 1 unit with 2 kW and 1 unit with 1 kW is needed to meet the energy needs of a residential building with and without BES. It can be concluded that heating and cooling the building with a radiator and absorption chiller cycle is more cost‐effective. The energy and exergy efficiency of ORC is reported as 11.3% and 65.7%, respectively, and the highest exergy destruction rate is related to the heater and boiler. From the economic point of view, the payback period of System II compared with System I is reduced from 18.4 to 5.66 years without using BES. With the use of BES, the payback period is reduced to 5.3 and 5.66 years, respectively. The lowest and highest electricity prices belong to System I with and without BES, which are 3.11 and 0.36 US$/kWh, respectively.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3