An efficient parallel solution scheme for the phase field approach to dynamic fracture based on a domain decomposition method

Author:

Hao Shourong1ORCID,Shen Yongxing123ORCID

Affiliation:

1. University of Michigan—Shanghai Jiao Tong University Joint Institute Shanghai Jiao Tong University Shanghai China

2. Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure Shanghai Jiao Tong University Shanghai China

3. Solid‐state Battery Research Center, Global Institute of Future Technology Shanghai Jiao Tong University Shanghai China

Abstract

AbstractThe phase field approach to fracture becomes popular for complicated fracture problems in recent years. However, its widespread application is hindered by its high computational cost. In this article, we propose an efficient parallel explicit‐implicit solution scheme for the phase field approach to dynamic fracture based on a domain decomposition method, specifically, the dual‐primal finite element tearing and interconnecting (FETI‐DP) method. In this scheme, the displacement field is updated by an explicit algorithm in parallel, and the phase field is implicitly solved by the FETI‐DP method. In particular, Lagrange multipliers are introduced to ensure the interface continuity of the phase field. In the computational process, the information exchange among subdomains merely exists in a few substeps, which renders the cost for communication very small. Moreover, the size of equations to be solved is proportional to the total area of subdomain interfaces, which is significantly reduced compared with a typical single‐domain solution procedure. The solution scheme is able to perform phase field simulations with a million of degrees of freedom using only 0.034 core hours per load step, and has flexible extensibility for existing phase field codes. Several numerical examples demonstrate the accuracy and efficiency of the proposed scheme.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Applied Mathematics,General Engineering,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3