Assessing drivers of estuarine pH: A comparative analysis of the continental U.S.A.'s two largest estuaries

Author:

Hall Nathan1ORCID,Testa Jeremy2ORCID,Li Ming3ORCID,Paerl Hans1ORCID

Affiliation:

1. Department of Earth Marine and Environmental Sciences Institute of Marine Sciences, University of North Carolina at Chapel Hill Morehead City North Carolina USA

2. Chesapeake Biological Laboratory University of Maryland Center for Environmental Science Solomons Maryland USA

3. Horn Point Laboratory University of Maryland Center for Environmental Science Cambridge Maryland USA

Abstract

AbstractIn estuaries, local processes such as changing material loads from the watershed and complex circulation create dynamic environments with respect to ecosystem metabolism and carbonate chemistry that can strongly modulate impacts of global atmospheric CO2 increases on estuarine pH. Long‐term (> 20 yr) surface water pH records from the USA's two largest estuaries, Chesapeake Bay (CB) and Neuse River Estuary‐Pamlico Sound (NRE‐PS) were examined to understand the relative importance of atmospheric forcing vs. local processes in controlling pH. At the estuaries’ heads, pH increases in CB and decreases in NRE‐PS were driven primarily by changing ratios of river alkalinity to dissolved inorganic carbon concentrations. In upper reaches of CB and middle reaches of the NRE‐PS, pH increases were associated with increases in phytoplankton biomass. There was no significant pH change in the lower NRE‐PS and only the polyhaline CB showed a pH decline consistent with ocean acidification. In both estuaries, interannual pH variability showed robust, positive correlations with chlorophyll a (Chl a) during the spring in mid to lower estuarine regions indicative of strong control by net phytoplankton production. During summer and fall, Chl a and pH negatively correlated in lower regions of both estuaries, given a shift toward heterotrophy driven by changes in phytoplankton community structure and increases in the load ratio of dissolved inorganic nitrogen to organic carbon. Tropical cyclones episodically depressed pH due to vertical mixing of CO2 rich bottom waters and post‐storm terrestrial organic matter loading. Local processes we highlight represent a significant challenge for predicting future estuarine pH.

Funder

National Science Foundation

Publisher

Wiley

Subject

Aquatic Science,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3