Identifying program benefits when participation is misreported

Author:

Tommasi Denni1,Zhang Lina2

Affiliation:

1. University of Bologna, IZA and CDES Bologna Italy

2. University of Amsterdam and Tinbergen Institute Amsterdam The Netherlands

Abstract

SummaryIn cases of noncompliance with an assigned treatment, estimates of causal effects typically rely on instrumental variables (IV). However, when participation is also misreported, the IV estimand may become a nonconvex combination of local average treatment effects that fails to satisfy even a minimal condition for being causal. The aim of our paper is to generalize the MR‐LATE approach. This is an alternative IV estimand that is more robust in cases of noncompliance and nondifferential misclassification of the treatment variable. Our generalization is threefold: First, we incorporate discrete and multiple‐discrete instrument(s); second, we consider the use of instrument(s) under a weaker, partial monotonicity condition; third, we provide a general inferential procedure. Under relatively stringent assumptions, MR‐LATE is either identical to the IV estimand or less biased than the naïve IV estimand. Under less stringent assumptions, the MR‐LATE estimand can identify the sign of the IV estimand. We conclude with the use of a dedicated Stata command, ivreg2m, to assess the return on education in the United Kingdom.

Publisher

Wiley

Reference52 articles.

1. Semiparametric instrumental variable estimation of treatment response models;Abadie A.;Journal of Econometrics,2003

2. Testing for causal effects in a generalized regression model with endogenous regressors;Abrevaya J.;Econometrica,2010

3. Partial Identification of Marginal Treatment Effects with Discrete Instruments and Misreported Treatment*

4. Acerenza S. Ban K. &Kédagni D.(2023).Marginal treatment effects with a misclassified treatment. (Tech. rep.).https://arxiv.org/abs/2105.00358

5. Regression with a binary independent variable subject to errors of observation;Aigner D. J.;Journal of Econometrics,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3