Optimization Design of Dual‐Parallel Rotor Permanent Magnet Motor Based on Dynamic Kriging Surrogate Model

Author:

Chen Yang1,Tao Dajun1,Li Shoupeng1,Ge Baojun1

Affiliation:

1. School of Electrical and Electronic Engineering Harbin University of Science and Technology Harbin 150080 China

Abstract

In order to reduce the torque ripple and the unbalanced electromagnetic force on the rotor of the dual‐parallel rotor permanent magnet motor, a dynamic Kriging surrogate model is proposed to optimize its structural parameters. In the process of constructing the dynamic Kriging surrogate model, the concept of key sampling space is introduced, which solves the problems of low optimization efficiency and poor model accuracy of the traditional static surrogate model based on ‘one‐time’ sampling. The topological structure of the dual‐parallel rotor permanent magnet motor is introduced, and a prototype is used to verify the accuracy of the numerical model. The optimization parameters are determined, and the initial sampling space of each optimization parameter is determined according to the influence law of a single parameter on the optimization objectives. The initial sample database of the Kriging surrogate model is established, and a dynamic criterion for adding sample points is proposed. Combined with the NSGA‐II algorithm, the surrogate model is constructed and solved. The optimal solution is substituted into the numerical model, which verifies the feasibility and correctness of the proposed optimization design method. The accuracy of the dynamic Kriging surrogate model is discussed and compared with the traditional static surrogate model. © 2024 Institute of Electrical Engineers of Japan and Wiley Periodicals LLC.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3