Evaluation of free radical‐induced structural changes and their effect on antioxidant and anti‐inflammatory activities of UV/H2O2‐degraded dextrans

Author:

Zhu Biyang1,Li Liuting1,Hileuskaya Kseniya2,Xu Baojun3,You Lijun1ORCID

Affiliation:

1. School of Food Science and Engineering South China University of Technology Guangzhou Guangdong China

2. Institute of Chemistry of New Materials National Academy of Sciences of Belarus Minsk Belarus

3. Department of Life Sciences, Food Science and Technology Program BNU–HKBU United International College Zhuhai China

Abstract

AbstractAlthough ultraviolet (UV)/H2O2 treatment could effectively improve the bioactivities of polysaccharides, the relationship between free radical‐induced structural changes and the bioactivities of products remains unknown. Therefore, this work investigated the changes in the chemical characteristics and chain conformations of degraded dextrans by the UV/H2O2 system as well as their antioxidant and anti‐inflammatory activities. The apparent degradation efficiencies of dextrans under different UV/H2O2 parameters were first investigated. UV/H2O2 treatment effectively destroyed the pyranose rings and glycosidic bonds of dextrans and significantly improved their uronic acid and carboxy contents. Furthermore, conformational studies revealed that besides the rapid decrease in the molecular weight, the compact spherical conformation of dextrans was gradually depolymerized into the flexible random coil conformation. Moreover, the significant antioxidant and anti‐inflammatory activities of the degraded dextrans were mainly attributed to their more extended random coil chains, increased quantity of reducing groups, and lower molecular sizes. This study contributes to investigating the structure–activity relationship of polysaccharides prepared by free radicals‐mediated degradation.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3