Affiliation:
1. Beaumont Health System (now Corewell Health) Royal Oak Michigan USA
2. Beaumont Health System Royal Oak Michigan USA
3. Beaumont Health System Dearborn Michigan USA
4. Beaumont Health System Lenox Michigan USA
Abstract
AbstractThere is widespread consensus in the literature that flattening filter free (FFF) beams have a lower primary barrier transmission than flattened beams. Measurements presented here, however, show that for energy compensated FFF beams, the barrier transmission can be as much as 70% higher than for flattened beams. The ratio of the FFF barrier transmission to the flattened beam barrier transmission increases with increasing barrier thickness. The use of published FFF TVL data for energy compensated FFF beams could lead to an order of magnitude underestimate of the air kerma rate. There are little data in the literature on the field size dependence of the barrier transmission for flattened beams. Barrier transmission depends on the field size at the barrier, not at isocenter Measurements are presented showing the relative dependence of barrier transmission on the field size, measured at the barrier, for 6 MV and 10 MV beams. An analytical fitting formula is provided for the field size dependence. For field sizes greater than about 150 cm in side length, the field size dependence is minimal. For field sizes less than about 100 cm, the transmission declines rapidly as the field size decreases.
Subject
Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献