Linac primary barrier transmission: Flattening filter free and field size dependence

Author:

McDermott Patrick N.1,Drake Douglas2,Knill Cory3,Sigler Michael D.4

Affiliation:

1. Beaumont Health System (now Corewell Health) Royal Oak Michigan USA

2. Beaumont Health System Royal Oak Michigan USA

3. Beaumont Health System Dearborn Michigan USA

4. Beaumont Health System Lenox Michigan USA

Abstract

AbstractThere is widespread consensus in the literature that flattening filter free (FFF) beams have a lower primary barrier transmission than flattened beams. Measurements presented here, however, show that for energy compensated FFF beams, the barrier transmission can be as much as 70% higher than for flattened beams. The ratio of the FFF barrier transmission to the flattened beam barrier transmission increases with increasing barrier thickness. The use of published FFF TVL data for energy compensated FFF beams could lead to an order of magnitude underestimate of the air kerma rate. There are little data in the literature on the field size dependence of the barrier transmission for flattened beams. Barrier transmission depends on the field size at the barrier, not at isocenter Measurements are presented showing the relative dependence of barrier transmission on the field size, measured at the barrier, for 6 MV and 10 MV beams. An analytical fitting formula is provided for the field size dependence. For field sizes greater than about 150 cm in side length, the field size dependence is minimal. For field sizes less than about 100 cm, the transmission declines rapidly as the field size decreases.

Publisher

Wiley

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linac primary barrier transmission for concrete: Monte Carlo calculations;Journal of Applied Clinical Medical Physics;2022-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3