Molecular and cellular level characterization of cytoskeletal mechanics using a quartz crystal microbalance

Author:

Kerivan Emily M.1,Tobin Lyle12,Basil Mihir1,Reinemann Dana N.13ORCID

Affiliation:

1. Department of Biomedical Engineering University of Mississippi University Mississippi 38677 USA

2. Department of Chemistry and Biochemistry University of Mississippi University Mississippi 38677 USA

3. Department of Chemical Engineering University of Mississippi University Mississippi 38677 USA

Abstract

AbstractA quartz crystal microbalance (QCM) is an instrument that has the ability to measure nanogram‐level changes in mass on a quartz sensor and is traditionally used to probe surface interactions and assembly kinetics of synthetic systems. The addition of dissipation monitoring (QCM‐D) facilitates the study of viscoelastic systems, such as those relevant to molecular and cellular mechanics. Due to real‐time recording of frequency and dissipation changes and single protein‐level precision, the QCM‐D is effective in interrogating the viscoelastic properties of cell surfaces and in vitro cellular components. However, few studies focus on the application of this instrument to cytoskeletal systems, whose dynamic parts create interesting emergent mechanics as ensembles that drive essential tasks, such as division and motility. Here, we review the ability of the QCM‐D to characterize key kinetic and mechanical features of the cytoskeleton through in vitro reconstitution and cellular assays and outline how QCM‐D studies can yield insightful mechanical data alone and in tandem with other biophysical characterization techniques.

Funder

American Heart Association

National Institutes of Health

National Science Foundation

Publisher

Wiley

Subject

Cell Biology,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3