Examining the impact of filling ratio on thermosyphon performance in passive energy recovery processes with dual effects of evaporative cooling: An experimental study

Author:

Mohsin ALsayah Ahmed12ORCID,Faraj Johain J.1,Eidan Adel A.3,Alshukri Mohammed J.24ORCID

Affiliation:

1. Engineering Technical College Middle Technical University Baghdad Iraq

2. Refrigeration & Air‐Condition Department, Technical Engineering College The Islamic University Najaf Iraq

3. Engineering Technical College of Al‐Najaf Al‐Furat Al‐Awsat Technical University (ATU) Najaf Iraq

4. Department of Mechanical Engineering, Faculty of Engineering Kufa University Najaf Iraq

Abstract

AbstractThe thermosyphon heat exchanger contributes significantly to the improvement of energy conservation technology and has been used in multiple applications, raising the possibility of further studies to contribute to increasing the efficiency of heat pipes. This experimental study examines the different filling ratios of pure Acetone liquid inside a WHPHE integrated with the double‐effect of evaporative cooling to improve the energy‐saving technology. This work studies changing the filling ratio of pure acetone working fluid to investigate the effect of the filling ratio on heat exchanger performance in waste energy recovery technology. The heat exchanger was used with four rows and five tubes per row arranged in a staggered manner. The filling ratio of acetone inside the heat pipe was changed from 50% to 100%. The effect of the mass flow rate of air flowing in direct evaporative cooling on energy conservation technology was studied while the mass flow rate of air through indirect cooling remains constant in addition to the effect of ambient temperature. The results showed that the best filling percentage was between 80% at different temperatures, and the highest energy recovery percentage was when it was at the filling percentage of 80% in the presence of evaporative cooling.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3