ANN‐driven insights into heat and mass transfer dynamics in chemical reactive fluids across variable‐thickness surfaces

Author:

Khan Mumtaz1ORCID,Imran Mudassar2

Affiliation:

1. Faculty of Science Jiangsu University Zhenjiang Jiangsu China

2. College of Humanities and Science Ajman University Ajman UAE

Abstract

AbstractThis study investigates the heat and mass transfer dynamics in exothermic, chemically reactive fluids over variable‐thickness surfaces using advanced numerical methods and artificial neural networks (ANN). The importance of understanding these processes lies in their significant industrial applications, such as in chemical reactors and heat exchangers. We transformed nonlinear partial differential equations into ordinary differential equations and used the bvp4c numerical method to generate a comprehensive data set. The ANN model, trained with the Levenberg–Marquardt algorithm, was evaluated for its accuracy in simulating complex fluid dynamics and thermosolutal transport phenomena. Our results revealed that increasing the second‐grade fluid parameter enhanced skin friction by 20.38%, heat transfer rate by 1.16%, and mass transfer rate by 4.06%. The ANN model demonstrated high predictive precision with a validation mean squared error of . These findings highlight the effectiveness of the ANN methodology in providing precise simulations of fluid dynamics, which is crucial for optimizing industrial processes.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3