Multi‐scale edge aggregation mesh‐graph‐network for character secondary motion

Author:

Wang Tianyi1ORCID,Liu Shiguang1ORCID

Affiliation:

1. College of Intelligence and Computing Tianjin University Tianjin China

Abstract

AbstractAs an enhancement to skinning‐based animations, light‐weight secondary motion method for 3D characters are widely demanded in many application scenarios. To address the dependence of data‐driven methods on ground truth data, we propose a self‐supervised training strategy that is free of ground truth data for the first time in this domain. Specifically, we construct a self‐supervised training framework by modeling the implicit integration problem with steps as an optimization problem based on physical energy terms. Furthermore, we introduce a multi‐scale edge aggregation mesh‐graph block (MSEA‐MG Block), which significantly enhances the network performance. This enables our model to make vivid predictions of secondary motion for 3D characters with arbitrary structures. Empirical experiments indicate that our method, without requiring ground truth data for model training, achieves comparable or even superior performance quantitatively and qualitatively compared to state‐of‐the‐art data‐driven approaches in the field.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Reference35 articles.

1. Fast and deep deformation approximations

2. Subspace neural physics

3. SoftSMPL: Data‐driven Modeling of Nonlinear Soft‐tissue Dynamics for Parametric Humans

4. A Deep Emulator for Secondary Motion of 3D Characters

5. HaeriA SkoniecznyK.Subspace graph physics: real‐time rigid body‐driven granular flow simulation.CoRRabs/2111.10206.2021https://arxiv.org/abs/2111.10206

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3