Affiliation:
1. Werner Reichardt Center for Integrative Neuroscience Karl Eberhard University of Tübingen Tübingen Germany
2. Max Planck Institute for Biological Cybernetics Tübingen Germany
3. International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology Chinese Academy of Sciences Shanghai China
Abstract
AbstractThe insula has been classically divided into broad granular, dysgranular, and agranular architectonic sectors. We previously proposed a novel partition, dividing each sector into four to seven sharply delimited architectonic areas, with the dysgranular areas being possibly further subdivided into subtle horizontal partitions or “stripes.” In architectonics, discrete subparcellations are prone to subjective variability and need being supported with additional neuroanatomical methods. Here, using a secondary analysis of indirect connectional data in the rhesus macaque monkey, we examined the spatial relationship between the dysgranular architectonic stripes and tract‐tracing labeling patterns produced in the insula with injections of neuronal tracers in other cortical regions. The injections consistently produced sharply delimited patches of anterograde and/or retrograde labeling, which formed stripes across consecutive coronal sections of the insula. While the overall pattern of labeling on individual coronal sections varied with the injection site, the boundaries of the patches consistently coincided with architectonic boundaries on an adjacent cyto‐ (Nissl) and/or myelo‐ (Gallyas) architectonic section. This overlap supports the existence of a fine dysgranular stripe‐like partition of the primate insula, with possibly major implications for interoceptive processing in primates including humans. The modular organization of the insula could underlie a serial stream of integration from a dorsal primary interoceptive cortex toward progressively more ventral egocentric “self‐agency” and allocentric “social” dysgranular processing units.
Funder
Deutsche Forschungsgemeinschaft
Max-Planck-Gesellschaft
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献