Automated Video‐Based Approach for the Diagnosis of Tourette Syndrome

Author:

Schappert Ronja1,Verrel Julius1ORCID,Brügge Nele Sophie23,Li Frédéric2,Paulus Theresa14,Becker Leonie15,Bäumer Tobias16,Beste Christian789,Roessner Veit7,Fudickar Sebastian2,Münchau Alexander16ORCID

Affiliation:

1. Institute of Systems Motor Science University of Lübeck Lübeck Germany

2. Institute of Medical Informatics University of Lübeck Lübeck Germany

3. German Research Center for Artificial Intelligence Lübeck Germany

4. Department of Neurology University Medical Center Schleswig‐Holstein Lübeck Germany

5. Department of Pediatrics University Medical Center Schleswig‐Holstein Lübeck Germany

6. Lübeck Centre for Rare Diseases University Medical Center Schleswig‐Holstein Lübeck Germany

7. Department of Child and Adolescent Psychiatry, Faculty of Medicine TU Dresden Dresden Germany

8. Faculty of Medicine, University Neuropsychology Center TU Dresden Dresden Germany

9. Cognitive Psychology, Faculty of Psychology Shandong Normal University Jinan China

Abstract

AbstractBackgroundThe occurrence of tics is the main basis for the diagnosis of Gilles de la Tourette syndrome (GTS). Video‐based tic assessments are time consuming.ObjectiveThe aim was to assess the potential of automated video‐based tic detection for discriminating between videos of adults with GTS and healthy control (HC) participants.MethodsThe quantity and temporal structure of automatically detected tics/extra movements in videos from adults with GTS (107 videos from 42 participants) and matched HCs were used to classify videos using cross‐validated logistic regression.ResultsVideos were classified with high accuracy both from the quantity of tics (balanced accuracy of 87.9%) and the number of tic clusters (90.2%). Logistic regression prediction probability provides a graded measure of diagnostic confidence. Expert review of about 25% of lower‐confidence predictions could ensure an overall classification accuracy above 95%.ConclusionsAutomated video‐based methods have a great potential to support quantitative assessment and clinical decision‐making in tic disorders.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3