Seismic performance of the cantilever segment in prefabricated stepped beam–column joints

Author:

Li Yun1,An Yi12,Cheng Xin12,Li Wenda1,Jin Yuehan3

Affiliation:

1. Department of Civil Engineering Taiyuan University of Technology Taiyuan China

2. Shanxi Key Laboratory of Civil Engineering Disaster Prevention and Control Taiyuan University of Technology Taiyuan China

3. The Fourth Construction Co., Ltd., of CSCEC 7th Division Xi'an China

Abstract

AbstractThe seismic performance and construction speed of the prefabricated steel structures are greatly influenced by the configuration of the beam–column joints. The stepped beam–column joint proposed in this paper, featuring with flush surfaces on both the upper and lower beam flanges, was designed to satisfy the requirements of favorable seismic resistance and high installation efficiency. Notably, the junction between the stepped cantilever segment and the stepped beam segment is crucial in the stepped joint. Therefore, cyclic loading tests were conducted on two cantilever specimens with different connection forms to determine their seismic behavior and failure modes. The experimental results indicated that the connection forms have a minor effect on the elastic phase behavior. However, a significant influence was observed on the ultimate load‐bearing capacity and energy dissipation. The result also indicated that the specimen with a thicker end plate exhibited excellent seismic performance, with favorable load‐bearing and plastic deformation capacity. The seismic performance of the joint specimen with U‐shaped latch was inferior, with the welding seam on the flange connected to the end plate tearing prematurely due to the stress concentration. Besides, elaborate finite element models were established, which were confirmed by the test results. Finally, parametric analysis considering the effect of end plate thickness was conducted, and the bolts' forces during the loading progress on the connection surfaces were analyzed. The result indicated that the joint's load‐bearing capacity and stiffness would decrease with the reduction of end plate thickness.

Funder

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3