Adaptive neural network control for permanent magnet synchronous motor with input nonlinearity

Author:

Lin Shan1,Wu Huiyuan2,Liu Shuangyin3,Wang Xiaowei4,Zhao Zhijia4ORCID

Affiliation:

1. Guangzhou Metro Design and Research Institute Co., Ltd Guangzhou China

2. Robotics Institute Guangdong Open University Guangzhou China

3. College of Information Science and Technology Zhongkai University of Agriculture and Engineering Guangzhou China

4. School of Mechanical and Electric Engineering Guangzhou University Guangzhou China

Abstract

AbstractThis study aims to design a new adaptive control method for permanent magnet synchronous motors (PMSMs) using neural networks (NNs). In comparison to traditional motor backstepping control designs, this research introduces a command filtering strategy to effectively address the common issue of “complexity explosion” in traditional methods. Additionally, considering the potential input hysteresis nonlinearity in practical applications, we introduce a hysteresis inverse operator to mitigate its adverse effects on control. Furthermore, by employing a finite‐time control strategy, we ensure rapid convergence of tracking errors within a finite time frame. Moreover, an adaptive NN controller is designed to approximate unknown continuous nonlinear functions of the system. Finally, the stability and convergence of the closed‐loop system are analyzed using the direct Lyapunov method.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

National Natural Science Foundation of China

Publisher

Wiley

Reference45 articles.

1. Disturbance‐observer‐based adaptive finite‐time dynamic surface control for PMSM with time‐varying asymmetric output constraint;Li M.;Asian J. Control,2023

2. Integrated observer‐based terminal sliding‐mode speed controller for PMSM drives considering multi‐source disturbances;Tian M.;IEEE Trans. Power Electron.,2024

3. Adaptive observer‐based current constraint control for electric vehicle used PMSM;Wang Y.;Appl. Energy,2024

4. Application of new sliding mode control in vector control of PMSM;Yang H.;IEICE Electron. Express,2022

5. Model predictive voltage control for PMSM system with low parameter sensitivity;Zhang X.;IEEE Trans. Ind. Electron.,2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3