Investigation of electrocatalytic activity of palladium nanoparticle for ammonia borane oxidation via single‐entity electrochemistry

Author:

Park Seungyoung1ORCID,Kim Ki Jun1ORCID,Kwon Seong Jung1

Affiliation:

1. Department of Chemistry Konkuk University Seoul Korea

Abstract

AbstractAmmonia borane (AB) has garnered significant attention as a high‐efficiency energy source, prompting extensive investigations into its electrochemical oxidation. One prominent avenue of research focuses on the development of electrocatalysts to enhance the oxidation of AB. Employing the novel approach of single‐entity electrochemistry (SEE), the electrocatalytic properties of gold (Au), silver (Ag), and palladium (Pd) nanoparticles (NPs) for AB oxidation were explored. In the case of Au and Ag NPs, SEE experiments yielded no discernible current signal, in contrast to the electrocatalytic currents observed with bulk electrodes. However, when Pd NPs were utilized, characteristic staircase signals in the SEE measurements were observed. The variation of the SEE current signal for Pd NPs under different applied potentials, AB concentrations, and NP concentrations was further investigated. An analysis of the SEE signal elucidated the conditions under which Pd NPs can effectively catalyze AB oxidation at the single NP level.

Funder

National Research Foundation

Ministry of Trade, Industry and Energy

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3