Higher Pericyte Content and Secretory Activity of Microfragmented Human Adipose Tissue Compared to Enzymatically Derived Stromal Vascular Fraction

Author:

Vezzani Bianca1,Shaw Isaac1,Lesme Hanna1,Yong Li1,Khan Nusrat1,Tremolada Carlo2,Péault Bruno13

Affiliation:

1. a MRC Center for Regenerative Medicine University of Edinburgh, Edinburgh, United Kingdom

2. b Image Institute, Milan, Italy

3. c Orthopaedic Hospital Research Center and Broad Stem Cell Research Center David Geffen School of Medicine, University of California, Los Angeles, California, USA

Abstract

Abstract Autologous adipose tissue is used for tissue repletion and/or regeneration as an intact lipoaspirate or as enzymatically derived stromal vascular fraction (SVF), which may be first cultured into mesenchymal stem cells (MSCs). Alternatively, transplant of autologous adipose tissue mechanically fragmented into submillimeter clusters has recently showed remarkable efficacy in diverse therapeutic indications. To document the biologic basis of the regenerative potential of microfragmented adipose tissue, we first analyzed the distribution of perivascular presumptive MSCs in adipose tissue processed with the Lipogems technology, observing a significant enrichment in pericytes, at the expense of adventitial cells, as compared to isogenic enzymatically processed lipoaspirates. The importance of MSCs as trophic and immunomodulatory cells, due to the secretion of specific factors, has been described. Therefore, we investigated protein secretion by cultured adipose tissue clusters or enzymatically derived SVF using secretome arrays. In culture, microfragmented adipose tissue releases many more growth factors and cytokines involved in tissue repair and regeneration, noticeably via angiogenesis, compared to isogenic SVF. Therefore, we suggest that the efficient tissue repair/regeneration observed after transplantation of microfragmented adipose tissue is due to the secretory ability of the intact perivascular niche.

Funder

British Heart Foundation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3