Affiliation:
1. State Key Laboratory of Powder Metallurgy College of Chemistry and Chemical Engineering Central South University Changsha 410083 P.R. China
Abstract
AbstractHeteroatom doping is a promising strategy for adjusting the microstructure of hard carbon (HC) to promote its electrochemical sodium storage performance. However, clarifying the doping sites of heteroatoms and effectively regulating their doping levels remain serious challenges. Herein, this work reveals the impact of three distinct structural precursors on S‐doped hard carbon: namely glucose (small organic molecule), carbon dots (CDs, intermediate state between organic and inorganic), and graphitized carbon fibers (inorganic carbon materials). It is demonstrated that the S‐doped HC derived from CDs possesses a more significant number of C─S bonds within its carbon framework, which is attributed to the preferential bonding between sulfur and short polymeric chains abundant in unsaturated functional groups. And these chains cluster prominently on the surface of CDs, enhancing the affinity of sulfur. Furthermore, as a prominent feature of CDs, the extremely small size inherently distinguishes them from other precursors, enabling them to serve as fundamental units for constructing various carbon microstructures, such as three‐dimensional (3D) structure. In summary, this study explores the influence of different precursor structures on heteroatom doping, with CDs identified as the most useful precursor.
Funder
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献