Simultaneous Band Alignment Modulation and Carrier Dynamics Optimization Enable Highest Efficiency in Cd‐Free Sb2Se3 Solar Cells

Author:

Chen Shuo1,Ye Yu‐Ao1,Ishaq Muhammad1,Ren Dong‐Lou2,Luo Ping1,Wu Ke‐Wen1,Zeng Yu‐Jia1,Zheng Zhuang‐Hao1,Su Zheng‐Hua1,Liang Guang‐Xing1ORCID

Affiliation:

1. Shenzhen Key Laboratory of Advanced Thin Films and Applications Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province State Key Laboratory of Radio Frequency Heterogeneous Integration College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen Guangdong 518060 China

2. State Key Laboratory of Featured Metal Materials and Life‐cycle Safety for Composite Structures Guangxi Key Laboratory of Processing for Non‐ferrous Metals and Featured Materials School of Resources Environment and Materials Guangxi University Nanning Guangxi 530004 China

Abstract

AbstractAntimony selenide (Sb2Se3) has developed as an eco‐friendly photovoltaic candidate owing to its non‐toxic composition and exceptional optoelectronic properties. However, the toxic and parasitic light‐absorbing CdS are widely used as electron transport layer (ETL) in Sb2Se3 solar cells, which severely limits its development. Herein, an alternative, zinc tin oxide (ZTO) ETL with varying composition‐dependent energy structure is deposited by atomic layer deposition (ALD) technique and used for constructing Cd‐free Sb2Se3 solar cells. It has been found that the ZTO ETL possessing an appropriate Zn/Sn ratio can alter the Sb2Se3/ZTO heterojunction band alignment to an ideal “spike‐like” arrangement. It not only suppresses the accumulation and recombination of charge carriers at the interface, but also effectively enhances carrier transport. In addition, thanks to the formation of passivated Sb2O3 ultra‐thin layer upon ALD process, the non‐radiative recombination within bulk Sb2Se3 can be effectively suppressed, and therefore enhancing carrier lifetime, extraction efficiency, and collection efficiency. Consequently, the as‐fabricated Mo/Sb2Se3/ZTO/ITO/Ag thin‐film solar cell demonstrates an impressive efficiency of 8.63%. This accomplishment establishes it as the most efficient Cd‐free Sb2Se3 solar cell to date, underscoring the significant advantages of incorporating ZTO ETL in the development of Sb2Se3 photovoltaic scenarios.

Funder

National Natural Science Foundation of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3