Combined Defect and Heterojunction Engineering in ZnTe/CoTe2@NC Sulfur Hosts Toward Robust Lithium–Sulfur Batteries

Author:

Huang Chen12,Yu Jing13,Li Canhuang12,Cui Zhibiao4,Zhang Chaoqi15,Zhang Chaoyue6,Nan Bingfei1,Li Junshan7,Arbiol Jordi38,Cabot Andreu18ORCID

Affiliation:

1. Catalonia Institute for Energy Research‐IREC Sant Adrià de Besòs 08930 Barcelona Spain

2. Department of Chemistry Universitat de Barcelona 08028 Barcelona Spain

3. Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and BIST Campus UAB, Bellaterra 08193 Barcelona Catalonia Spain

4. School of Chemistry South China Normal University Guangzhou 510006 China

5. College of Materials Science and Engineering Fuzhou University No. 2, Xueyuan Road, Minhou County Fuzhou City Fujian Province 350108 China

6. Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education & School of Physical Science & Technology Lanzhou University Lanzhou 730000 China

7. Institute for Advanced Study Chengdu University Chengdu 610106 China

8. ICREA Pg. Lluis Companys 08010 Barcelona Catalonia Spain

Abstract

AbstractLithium–sulfur batteries (LSBs) are feasible candidates for the next generation of energy storage devices, but the shuttle effect of lithium polysulfides (LiPSs) and the poor electrical conductivity of sulfur and lithium sulfides limit their application. Herein, a sulfur host based on nitrogen‐doped carbon (NC) coated with small amount of a transition metal telluride (TMT) catalyst is proposed to overcome these limitations. The properties of the sulfur redox catalyst are tuned by adjusting the anion vacancy concentration and engineering a ZnTe/CoTe2 heterostructures. Theoretical calculations and experimental data demonstrate that tellurium vacancies enhance the adsorption of LiPSs, while the formed TMT/TMT and TMT/C heterostructures as well as the overall architecture of the composite simultaneously provide high Li+ diffusion and fast electron transport. As a result, v‐ZnTe/CoTe2@NC/S sulfur cathodes show excellent initial capacities up to 1608 mA h g−1 at 0.1C and stable cycling with an average capacity decay rate of 0.022% per cycle at 1C during 500 cycles. Even at a high sulfur loading of 5.4 mg cm–2, a high capacity of 1273 mA h g−1 at 0.1C is retained, and when reducing the electrolyte to 7.5 µL mg−1, v‐ZnTe/CoTe2@NC/S still maintains a capacity of 890.8 mA h g−1 after 100 cycles at 0.1C.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3