Operando Insights on the Degradation Mechanisms of Rhenium‐Doped and Undoped Molybdenum Disulfide Nanocatalysts During Hydrogen Evolution Reaction and Open‐Circuit Conditions

Author:

Aymerich‐Armengol Raquel1ORCID,Vega‐Paredes Miquel1ORCID,Wang Zhenbin2,Mingers Andrea M.1,Camuti Luca34,Kim Jeeung5,Bae Jeongwook5,Efthimiopoulos Ilias1ORCID,Sahu Rajib1ORCID,Podjaski Filip6ORCID,Rabe Martin1,Scheu Christina1ORCID,Lim Joohyun5ORCID,Zhang Siyuan1ORCID

Affiliation:

1. Max‐Planck‐Institut für Eisenforschung GmbH Max‐Planck‐Straße 1 40237 Düsseldorf Germany

2. Department of Materials Science and Engineering City University of Hong Kong Hong Kong SAR 999077 China

3. Max‐Planck‐Institut für Festkörperforschung Heisenbergstraße 1 70569 Stuttgart Germany

4. Department of Chemistry University of Munich (LMU) Butenandtstraße 5–13 (D) 81377 Munich Germany

5. Department of Chemistry Institute for Molecular Science and Fusion Technology Multidimensional Genomics Research Center Kangwon National University Chuncheon Gangwon 24341 Republic of Korea

6. Department of Chemistry Imperial College London London W12 0BZ UK

Abstract

AbstractMolybdenum disulfide (MoS2) nanostructures are promising catalysts for proton‐exchange‐membrane (PEM) electrolyzers to replace expensive noble metals. Their large‐scale application demands high activity for the hydrogen evolution reaction (HER) as well as robust durability. Doping is commonly applied to enhance the HER activity of MoS2‐based nanocatalysts, but the effect of dopants on the electrochemical and structural stability is yet to be discussed. Herein, operando electrochemical measurements to the structural evolution of the materials down to the nanometric scale are correlated by identical location electron microscopy and spectroscopy. The range of stable operation for MoS2 nanocatalysts with and without rhenium doping is experimentally defined. The responsible degradation mechanisms at first electrolyte contact, open circuit stabilization, and HER conditions are experimentally identified and confirmed with the calculated Pourbaix diagram of Re‐doped MoS2. Doping MoS2‐based nanocatalysts is validated as a promising strategy for continuing the improvement of high‐performance and durable PEM electrolyzers.

Funder

Deutsche Forschungsgemeinschaft

UK Research and Innovation

National Research Foundation of Korea

Ministry of Science and ICT, South Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3