Thermally Conductive Hexagonal Boron Nitride/Polymer Composites for Efficient Heat Transport

Author:

Yao Chengning1,Leahu Grigore2,Holicky Martin1,Liu Sihui1,Fenech‐Salerno Benji1,Lai May Ching3,Larciprete Maria Cristina2,Ducati Caterina3,Divitini Giorgio4,Voti Roberto Li2,Sibilia Concita2,Torrisi Felice15ORCID

Affiliation:

1. Department of Chemistry and Centre for Processable Electronics Imperial College London Molecular Sciences Research Hub White City Campus, 82 Wood Lane London W12 0BZ UK

2. Dipartimento di Scienze di Base ed Applicate per l'Ingegneria Sapienza Università di Roma Via A. Scarpa 16 Roma 00161 Italy

3. Department of Materials Science and Metallurgy 27 Charles Babbage Road Cambridge CB3 0FS UK

4. Electron Spectroscopy and Nanoscopy Istituto Italiano di Tecnologia Genova 16163 Italy

5. Dipartimento di Fisica e Astronomia Università di Catania & CNR‐IMM (Catania Universita’) Via S. Sofia 64 Catania 95123 Italy

Abstract

AbstractCommercial thermally conductive dielectric materials used in electronic packaging typically exhibit thermal conductivities (κ) ranging from 0.8 to 4.2 W m−1 K−1. Hexagonal boron nitride (h‐BN) flakes are promising thermally conductive materials for the thermal management of next‐generation electronics. These electrically insulating yet thermally conducting h‐BN flakes can be incorporated as thermal fillers to impart high κ to polymer‐based composites. A cellulose‐based composite embedded with few‐layer h‐BN (FLh‐BN) flakes, achieving a κ ≈ 21.7 W m−1 K−1, prepared using a cost‐effective and scalable procedure is demonstrated. This value is >5 times higher than the κ observed in composites embedded with bulk h‐BN (Bh‐BN, κ ≈ 4.5 W m−1 K−1), indicating the benefits of the superior κ of FLh‐BN on the κ of h‐BN polymer composites. When applied as a paste for thermal interface material (TIM), the FLh‐BN composite can reduce the maximum temperature (Tmax) by 24.5 °C of a heating pad at a power density (h) of 2.48 W cm−2 compared to Bh‐BN composites at the same h‐BN loading. The results provide an effective approach to improve the κ of cellulose‐based thermal pastes for TIMs and demonstrate their viability for heat dissipation in integrated circuits (ICs) and high‐power electronic devices.

Funder

European Commission

China Scholarship Council

Engineering and Physical Sciences Research Council

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3