Oncolytic Virus‐Like Nanoparticles for Tumor‐Specific Gene Delivery

Author:

Li Yuchao1,Yang Haiyuan1,Zong Xiaoqing1,Li Xiaodi1,Yuan Pengfei1,Yang Caiqi1,Chen Xinjie1,Yan Xiaodie1,Wen Yaoqi1,Zhu Tianci1,Xue Wei1,Dai Jian1ORCID

Affiliation:

1. Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Engineering Technology Research Center of Drug Carrier of Guangdong Department of Biomedical Engineering Jinan University Guangzhou 510632 China

Abstract

AbstractNucleic acid drugs are widely used in biomedical fields. However, one of the main challenges in vivo is to selectively deliver nucleic acid drugs to subcellular compartments. To solve this problem, an oncolytic virus‐like nanoparticle, OV@FN, is constructed that can directly deliver nucleic acids to the cytoplasm through membrane fusion in response to the slightly acidic environment of the tumor. OV@FN is composed of a nano‐core (NA‐Zn@G) that can accurately release nucleic acids in response to high concentrations of glutathione in the cytoplasm of tumor cells and a hybrid membrane vesicle (FN) expressing oncolytic virus fusion membrane glycoprotein (mVSV‐G). The study findings suggest that OV@FN efficiently and selectively delivers nucleic acids to the cytoplasm of tumor cells, as compared to normal cells. Importantly, FN effectively induces tumor cells to form a syncytium, thus promoting intracellular drug diffusion, and enhancing the gene therapy effect. In vivo gene silencing test shows that OVsiR@FN has a significant nucleic acid delivery performance. In the melanoma model, the OV3pdsR@FN shows remarkable tumor ablation ability and improves the immunosuppressive microenvironment of the tumor site. OV@FN offers a novel approach to designing gene delivery and tumor therapy platforms.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3