Affiliation:
1. Key Laboratory of Biomaterials of Guangdong Higher Education Institutes Engineering Technology Research Center of Drug Carrier of Guangdong Department of Biomedical Engineering Jinan University Guangzhou 510632 China
Abstract
AbstractNucleic acid drugs are widely used in biomedical fields. However, one of the main challenges in vivo is to selectively deliver nucleic acid drugs to subcellular compartments. To solve this problem, an oncolytic virus‐like nanoparticle, OV@FN, is constructed that can directly deliver nucleic acids to the cytoplasm through membrane fusion in response to the slightly acidic environment of the tumor. OV@FN is composed of a nano‐core (NA‐Zn@G) that can accurately release nucleic acids in response to high concentrations of glutathione in the cytoplasm of tumor cells and a hybrid membrane vesicle (FN) expressing oncolytic virus fusion membrane glycoprotein (mVSV‐G). The study findings suggest that OV@FN efficiently and selectively delivers nucleic acids to the cytoplasm of tumor cells, as compared to normal cells. Importantly, FN effectively induces tumor cells to form a syncytium, thus promoting intracellular drug diffusion, and enhancing the gene therapy effect. In vivo gene silencing test shows that OVsiR@FN has a significant nucleic acid delivery performance. In the melanoma model, the OV3pdsR@FN shows remarkable tumor ablation ability and improves the immunosuppressive microenvironment of the tumor site. OV@FN offers a novel approach to designing gene delivery and tumor therapy platforms.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献