Charge Transfer in InAs@ZnSe‐MoS2 Heterostructures for Broadband Photodetection

Author:

Asaithambi Aswin1ORCID,Thakur Mukesh Kumar1ORCID,Zhu Dongxu2,Tofighi Nastaran Kazemi13,Pelli Cresi Jacopo Stefano4,Kuriyil Sidharth15,Curreli Nicola16ORCID,Petrini Nicolò1,Rebecchi Luca15ORCID,De Trizio Luca2,Toma Andrea4ORCID,Manna Liberato2,Kriegel Ilka15ORCID

Affiliation:

1. Functional Nanosystems Italian Institute of Technology via Morego 30 Genoa 16163 Italy

2. Nanochemistry Italian Institute of Technology via Morego 30 Genoa 16163 Italy

3. Physics and Chemistry of Nanostructures Group Department of Chemistry and NOLIMITS Core Facility for Non‐Linear Microscopy and Spectroscopy Ghent University Ghent 9000 Belgium

4. Clean Room facility Italian Institute of Technology Via Morego 3 Genoa 10129 Italy

5. Dipartimento di Scienza Applicata e Tecnologie (DISAT) Politecnico di Torino Corso Duca degli Abruzzi 24 Torino 10129 Italy

6. Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 Dübendorf 8600 Switzerland

Abstract

AbstractAbsorbing near‐infrared (NIR) photons, with longer wavelengths, in atomically thin monolayer MoS2 presents a significant challenge due to its weak optical absorption and narrow absorption bands. Consequently, MoS2‐based photodetector devices often experience low responsivity and a limited detection window. Herein, a novel InAs@ZnSe core@shell/1L‐MoS2 heterostructure, leveraging InAs@ZnSe as the primary infrared‐absorbing material and exploiting the formation of a type‐II heterostructure is showcased. Steady‐state and time‐resolved spectroscopy, along with optoelectronic characterization, are employed to investigate photo‐induced charge transfer dynamics. The results show efficient hole transfer to InAs@ZnSe upon excitation of both materials. Instead, with selective excitation of InAs@ZnSe, electron transfer is observed from InAs@ZnSe to the 1L‐MoS2. The heterostructure demonstrates a broadband photoresponse spanning the wavelength range of 300 to 850 nm, exhibiting a Responsivity of ≈103 A/W and Detectivity of ≈1011 Jones. The signal‐to‐noise ratio substantially increases by 3 to 4 orders of magnitude for 700 and 850 nm excitation compared to pristine 1L‐MoS2. The enhancement in photoresponse and signal‐to‐noise ratio is attributed to increased absorption, which helps eliminate defect and trap states, thereby promoting the photogating effect.

Funder

HORIZON EUROPE Marie Sklodowska-Curie Actions

H2020 Future and Emerging Technologies

HORIZON EUROPE European Research Council

H2020 European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3