Epitaxial 2D PbS Nanosheet‐Formamidinium Lead Triiodide Heterostructure Enabling High‐Performance Perovskite Solar Cells

Author:

Liu Xuanling1,Wu Ziyi1,Zhong Han1,Wang Xuanyu1,Yang Jianfei1,Zhang Ziling1,Han Jianhua2,Oron Dan3,Lin Hong1ORCID

Affiliation:

1. State Key Laboratory of New Ceramics & Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 P. R. China

2. College of Science Civil Aviation University of China Tianjin 300300 P. R. China

3. Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 76100 Israel

Abstract

AbstractNanomaterials such as quantum dots and 2D materials have been widely used to improve the performance of perovskite solar cells due to their favorable optical properties, conductivity, and stability. Nevertheless, the interfacial crystal structures between perovskites and nanomaterials have always been ignored while large mismatches can result in a significant number of defects within solar cells. In this work, cubic PbS nanosheets with (200) preferred crystal planes are synthesized through anisotropy growth. Based on the similar crystal structure between cubic PbS (200) and cubic‐phase formamidinium lead triiodide (α‐FAPbI3) (200), a nanoepitaxial PbS nanosheets‐FAPbI3 heterostructure with low defect density is observed. Attribute to the epitaxial growth, PbS nanosheets‐FAPbI3 hybrid polycrystalline films show decreased defects and better crystallization. Optimized perovskite solar cells perform both improved efficiency and stability, retaining 90% of initial photovoltaic conversion efficiency after being stored at 20 °C and 20% RH for 2500 h. Notably, the significantly improved stability is ascribed to the interfacial compression strain and chemical bonding between (200) planes of PbS nanosheets and α‐FAPbI3 (200). This study provides insight into high‐performance perovskite solar cells achieved by manipulating nanomaterial surfaces.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3