Affiliation:
1. State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 P. R. China
2. School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 P. R. China
Abstract
AbstractAchieving strong solid‐state photoluminescence and fast charge transport simultaneously for organic molecules is of significant importance but challenging because of the trade‐off between these properties. Herein, two tailored blue luminescent molecules constructed with ring‐fused carbonyl‐containing electron acceptors and spiro‐acridine electron donors are developed. Owing to ordered long‐range molecular alignment with proper interaction energies, their neat films exhibit ultrafast bipolar charge transport and strong delayed fluorescence with high quantum yields and short lifetimes. In doped organic light‐emitting diodes (OLEDs), both molecules display eminent electroluminescence performances with excellent external quantum efficiencies (EQEs) of 40.6%. They also exhibit brilliant blue lights with record‐beating EQEs of 30.2% in non‐doped thin‐layer OLEDs, and more importantly, high‐performance simplified non‐doped thick‐layer OLEDs are achieved, rendering lowered driving voltages, and the best EQEs of 23.0% with tiny efficiency roll‐offs. In addition, using them as sensitizers, remarkable EQEs of 40.1% and 23.2% with ultrasmall efficiency roll‐offs are realized in blue hyperfluorescence thin‐layer and thick‐layer OLEDs, respectively. The operational lifetimes are obviously elongated matter in non‐doped thick‐layer devices or hyperfluorescence thick‐layer devices. This work provides promising candidates for efficient simplified thick‐layer OLEDs and opens a new avenue toward organic molecules with strong delayed fluorescence and fast charge transport simultaneously.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献