Carbon Dots as Ligand Operons to Expand Cluster Size Distribution for High Load‐bearing Liquid Superlubricity

Author:

Liang Hongyu1ORCID,Liu Manqiang1,Yin Tianqiang1,Zou Shijing1,Xia Xiaojie1,Hua Xijun1,Fu Yonghong1,Zhang Junyan2,Bu Yongfeng3ORCID,Ren Xudong1

Affiliation:

1. Institute of Advanced Manufacturing and Modern Equipment Technology School of Mechanical Engineering Jiangsu University Zhenjiang 212013 China

2. State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China

3. Institute for Energy Research Jiangsu University Zhenjiang 212013 China

Abstract

AbstractAdding additives (e.g., carbon dots, CDs) to liquid lubricants is an effective method for enhancing their load‐bearing capacity and friction reduction. However, it is challenging to simultaneously impart high load‐bearing capacity and superlubricity for them (e.g., ionic liquid analogs, ILAs) through this strategy due to strong Coulombic interactions. With CDs as a competing ligand operon, the cluster size distribution can be expanded, conferring superlubricity with ultrahigh load‐bearing capacity (>705 MPa, the highest value of CDs‐based superlubricious materials thus far) for CDs/ILAs. In particular, methodologies such as Raman, 1H‐NMR, fourier transform infrared spectroscopy, and laser particle size analysis are employed to characterize the evolution of their H‐bonding interactions and particle size distribution. CDs can act as competing ligands and enable CDs/ILAs to form systems with ultra‐low coefficient of friction and wear consisting of a mixture of large and small clusters. The mixed and expanded size clusters facilitate the reduction of the viscosity for CDs/ILAs under shear, thereby reducing the interfacial shear resistance during superlubricity, while the CDs within them efficiently transfer the normal bearing loads. The progress is made from the perspective of cluster particle size distribution rather than individual additive properties, providing a new avenue for designing ILAs‐based superlubricious materials.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Qinglan Project of Jiangsu Province of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3