Dual Dynamic Crosslinked Hydrogel Patch Embodied with Anti‐Bacterial and Macrophage Regulatory Properties for Synergistic Prevention of Peritendinous Adhesion

Author:

Yao Xuan12,Hu Wenhui1,Li Yuheng1,Li Jianmei1,Kang Fei1,Zhang Jing3,Dong Shiwu14ORCID

Affiliation:

1. Department of Biomedical Materials Science College of Biomedical Engineering Third Military Medical University Chongqing 400038 P. R. China

2. Department of Clinical Hematology Faculty of Laboratory Medicine Third Military Medical University Chongqing 400038 P. R. China

3. College of Bioengineering Chongqing University Chongqing 400044 P. R. China

4. State Key Laboratory of Trauma and Chemical Poisoning Third Military Medical University Chongqing 400038 P. R. China

Abstract

AbstractThe occurrence of peritendinous adhesion, which hampers the quality and function of the healed tendon, is strongly linked to oxidative stress, inflammatory, and infection that occur after surgery. Tendon damage and repair provide a considerable obstacle for regenerative medicine owing to the absence of patches that possess comprehensive functionality, including self‐healing capacity, anti‐inflammatory and anti‐bacterial properties, as well as tissue repair guidance. A dual dynamic crosslinked network is created by coordination bonds between catechol groups in protocatechuic aldehyde (PA) and Fe3+, as well as a dynamic Schiff base reaction between amino groups in hyaluronic acid‐adipic acid dihydrazide (HA‐ADH) and aldehyde groups in PA. The HA‐ADH@PA/Fe hydrogel exhibits self‐healing ability, tissue adhesion, anti‐bacterial activity, regulation of macrophage polarization via the NF‐κB signaling, oxidative stress elimination, and anti‐inflammation. In addition, a dual‐layer Janus patch is created, taking inspiration from the anatomy and disease progression of tendon adhesion. The inner layer of the patch, which is in direct contact with the operated tendon, is a multifunctional HA‐ADH@PA/Fe hydrogel, encircled further by a poly(ɛ‐caprolactone) (PCL) electrospinning membrane outer layer facing the surrounding tissue. The PCL@HA‐ADH@PA/Fe hydrogel patch reduced tendon adhesion and supported tissue regeneration by stimulating macrophages polarization into an anti‐inflammatory phenotype and resolving both local and systemic inflammation. This research showcased the PCL@HA‐ADH@PA/Fe hydrogel patch as an alternative therapeutic method for preventing the development of adhesions around tendons.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3