Affiliation:
1. Engineering Research Center of Electronic Information Materials and Devices (Ministry of Education), Guangxi Key Laboratory of Information Materials, College of Materials Science and Engineering Guilin University of Electronic Technology Guilin 541004 P.R. China
2. Hunan Provincial Key Laboratory of Water Treatment Functional Materials and Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, College of Chemistry and Materials Engineering Hunan University of Arts and Science Changde 415000 P. R. China
3. College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education and National Demonstration Center for Experimental Chemistry Wuhan University Wuhan 430072 P. R. China
Abstract
AbstractEfficient modification of the interface between metal cathode and electron transport layer are critical for achieving high performance and stability of the inverted perovskite solar cells (PSCs). Herein, a new alcohol‐soluble rhodamine‐functionalized dodecahydro‐closo‐dodecaborate derivate, RBH, is developed and applied as an efficient cathode interlayer to overcome the (6,6)‐phenyl‐C61 butyrie acid methyl ester (PCBM)/Ag interface issues. By introducing RBH cathode interlayer, the functions of the interface traps passivation, interfacial hydrophobicity enhancement, interface contact improvement as well as built‐in potential enhancement are realized at the same time and thus correspondingly improve the device performance and stability. Consequently, a power conversion efficiency (PCE) of 21.08% and high fill factor of 83.37% are achieved, which is one of the highest values based on solution‐processed MAPbI3/PCBM heterojunction PSCs. Moreover, RBH can act as a shielding layer to slow down moisture erosion and self‐corrosion. The PCE of the RBH devices still maintain 84% for 456 h (85 °C @ N2), 87% for 360 h (23 °C @ relative humidity (RH) 35%) of its initial PCE value, while the control device can only maintain ≈23%, 58% of its initial PCE value under the same exposure conditions, respectively.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献