Surface Engineering of 3D Solar Evaporator for Uncompromising Water Evaporation and Salt Production Toward High Concentration Brine

Author:

Zhang Yanting1,Zhong Qiuyue1,Huang Qiong1,Hu Min1,He Fang1,Li Yuexiang1,Wang Zhenxing1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Nanchang University Nanchang 330031 P. R. China

Abstract

AbstractSolar‐driven interfacial evaporation toward highly salinity brine has drawn great attention due to its distinct advantages. Generally, most studies focus on how to improve the water evaporation rate while restrain the salt accumulation on evaporators. In fact, generating/recycling the salt during the evaporation process is of equal importance since the salt is also valuable. However, how to realize high salt generation rate while keep high water evaporation rate is still a great challenge, since high‐efficiency water evaporation and salt accumulation is conflicting in most cases. Herein, both high evaporation rate and high salt formation rate have been achieved via surface engineering of a 3D evaporator: 1) Constructing surround‐Janus structure with different wettability around a 3D evaporator; 2) Enhancing salt crystallization via introduction of tapes on special surface. Thanks to the distinct surface engineering, the water evaporation rate toward highly salinity brine (20 wt%) can reach up to ≈2.8 kg m−2 h−1, while the salt formation rate can be as high as ≈0.1 kg m−2 h−1. Moreover, the high performance can be well maintained even when the evaporator is irradiated with different angles. Specially, as a proof of concept, the potential of the 3D evaporator for Li+/Na+ separation is also demonstrated.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3