Asymmetric Charge Distribution of Active Centers in Small Molecule Quinone Cathode Boosts High‐Energy and High‐Rate Aqueous Zinc‐Organic Batteries

Author:

Li Cuicui1,Hu Liang1,Ren Xiuyun1,Lin Lu2,Zhan Changzhen3,Weng Qingsong1,Sun Xiaoqi2ORCID,Yu Xiaoliang1

Affiliation:

1. Department of Mechanical Engineering and Research Institute for Smart Energy The Hong Kong Polytechnic University Hong Kong 999077 China

2. Department of Chemistry Northeastern University 3–11 Wenhua Road Shenyang 110819 China

3. State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering Tsinghua University Beijing 100084 China

Abstract

AbstractSmall molecule quinone compounds are attractive cathode materials for rechargeable aqueous zinc‐organic batteries (AZOBs) because of their structural diversity and low‐cost merits. Among them, nonpolar quinones are dominant given the relatively low solubilities in aqueous electrolytes. However, their poor electronic conductivity and accumulated Coulombic repulsion lead to underutilized active sites and sluggish redox kinetics. Here, polar 2,6‐dimethoxy‐1,4‐benzoquinone (m‐DMBQ) works as an advanced AZOB cathode with unexpectedly superior performance over the nonpolar isomer of 2,5‐dimethoxy‐1,4‐benzoquinone (p‐DMBQ). The asymmetric charge distribution of active centers in the p−π conjugated backbone of m‐DMBQ induces reduced bandgap with improved electronic conductivity and redox activity, thus achieving a high specific capacity of 312 mAh g−1 approaching the theoretical limit. Additionally, the lowest unoccupied molecular orbital energy level is lowered for an increased average discharge voltage of 0.88 V. Characterizations and computational studies revealed boosted competitiveness of H+ relative to Zn2+ for significantly enhanced charge transfer kinetics and reversibility. As a result, the as‐fabricated AZOB achieves a high energy density of 275 Wh kg−1 based on m‐DMBQ along with high‐rate capability and long‐term cycling stability. This work provides a new molecular engineering strategy through regulating charge distribution symmetry for boosting charge storage in organic cathodes.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Hong Kong Polytechnic University

Innovation and Technology Fund

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3