Affiliation:
1. Key Laboratory of Bio‐based Material Science & Technology (Ministry of Education) Northeast Forestry University Harbin 150040 P. R. China
2. State Key Laboratory for Strength and Vibration of Mechanical Structures School of Aerospace Engineering Xi'an Jiaotong University Shaanxi 710049 P. R. China
Abstract
AbstractDeveloping sustainable and lightweight structural materials is a promising strategy for reducing carbon emissions in transportation and buildings. However, producing high‐performance bulk structural materials from sustainable biomass materials while maintaining excellent mechanical strength remains a major challenge, especially for further scale‐up. Herein, a scalable and robust bottom‐up strategy is reported to fabricate bulk wooden plate (W‐plate) with a typical “brick‐and‐mortar” structure from engineered wood particles via moderate delignification and in situ LiCl/DMAc treatment followed by hot‐pressing. The W‐plate constructed by delignified wood particles and regenerated cellulose nanofibers can achieve a confluence of mechanical strengthening and toughening by the ordered lamination structure and multiscale cellulose micro/nanofiber crosslinking interactions, resulting in high flexural strength (225.17 ± 12.18 MPa) and high fracture toughness (4.01 ± 0.53 MPa m0.5) while maintaining a low density (1.34 g cm−3), superior to typical metals and ceramics. Moreover, the W‐plate exhibits advantageous thermal properties, including a low thermal expansion coefficient (<19 × 10−6 K−1) and a high storage modulus (>7.5 GPa) compared to those of petroleum‐based polymers. Coupled with abundant and renewable raw materials, all‐cellulose components, and scalable and recyclable fabrication, the W‐plate can potentially be used as a high‐performance, cost‐effective, and environmentally friendly alternative for engineering applications.
Funder
National Natural Science Foundation of China
China Association for Science and Technology
China Postdoctoral Science Foundation
Natural Science Foundation of Heilongjiang Province
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献