Symmetry Breaking and Polarization Regulation in AgFeO2‐Based Photocathodes Through Oxygen Defect Engineering

Author:

Zhao Zong‐Yan1ORCID,Dong Xu‐Dong1,Shan Bao‐Feng1,Yang Jian1,Feng Jian‐Yong2,Zhao Jian‐Hong3,Zhang Jin3,Liu Qing‐Ju3,Li Zhao‐Sheng2,Zou Zhi‐Gang2

Affiliation:

1. Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China

2. College of Engineering and Applied Science Nanjing University Nanjing 210093 P. R. China

3. Yunnan Key Laboratory for Micro/Nano Materials & Technology School of Materials and Energy Yunnan University Kunming 650091 P. R. China

Abstract

AbstractPolar materials, with intrinsic polarization effects, present significant potential for photo(electro)catalysis. However, the available natural polar materials in this field are quite scarce, due to the requisite structural non‐centrosymmetry. Defect engineering emerges as a promising avenue for tuning material symmetry, yet achieving the transition from centrosymmetric to non‐centrosymmetric structures and optimizing associated polarization effects remains challenging. This study demonstrates symmetry breaking in centrosymmetric 3R‐delafossite AgFeO2 through ordered oxygen defects introduction, yielding substantial macroscopic polarization. The transition is achieved via annealing post‐treatment of co‐precipitation‐hydrothermal AgFeO2 samples, with precision in oxygen defects control by tailoring annealing conditions. Experimental characterizations reveal ordered interstitial oxygen and disordered oxygen vacancies. Density functional theory calculations indicate a higher propensity for the formation of disordered oxygen vacancies compared to ordered ones, while ordered interstitial oxygen is more easily formed than its disordered counterpart. Resultant macroscopic polarization enhances photoelectrochemical performance, with photocurrent density increasing from 0.79 to 2.95 µA cm−2. Coupling macroscopic and spin polarization via external electric and magnetic fields further enhances photocurrent density (≈18.44 µA cm−2). These findings provide reference cases and strategies for applying polarization effects in photo(electro)catalytic technology.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3