Synthetic Colonic Mucus Enables the Development of Modular Microbiome Organoids

Author:

Miller Michael A.1,Medina Scott12ORCID

Affiliation:

1. Department of Biomedical Engineering Pennsylvania State University University Park PA 16802‐4400 USA

2. Huck Institutes of the Life Sciences Pennsylvania State University University Park PA 16802‐4400 USA

Abstract

AbstractThe human colon is home to trillions of microorganisms that modulate gastrointestinal physiology. The understanding of how this gut ecosystem impacts human health, although evolving, is slowed by the lack of accessible tools suitable to studying complex host‐mucus‐microbe interactions. Here, a synthetic gel‐like material capable of recapitulating the varied structural, mechanical, and biochemical profiles of native human colonic mucus is reported to develop compositionally simple microbiome screening platforms with utility in microbiology and drug discovery. The viscous fibrillar material is realized through templated assembly of a fluorine‐rich amino acid at liquid‐liquid interphases. The fluorine‐assisted mucus surrogate (FAMS) can be decorated with mucins to serve as a habitat for microbial colonization and integrated with human colorectal cells to generate artificial mucosae, referred to as a microbiome organoid. Notably, FAMS are made with inexpensive and commercially available materials and can be generated using simple protocols and standard laboratory hardware. As a result, this platform can be broadly incorporated into various laboratory settings to advance probiotic research and inform in vivo approaches. If implemented into high throughput screening approaches, FAMS may represent a valuable tool to study compound metabolism and gut permeability, with an exemplary demonstration of this utility presented here.

Funder

National Institute of General Medical Sciences

Division of Materials Research

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3