Affiliation:
1. Department of Chemical & Materials Engineering University of Alberta Edmonton Alberta T6G 1H9 Canada
2. College of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 P. R. China
3. Advanced Catalytic Engineering Research Center of the Ministry of Education Hunan University Changsha Hunan 410082 P. R. China
Abstract
AbstractFabricating controllable superhydrophobic surfaces remains challenging in various fields ranging from chemical industries to biomedical engineering. Conventional methods commonly require volatile organic solvents and the assistance of special surface deposition and modification equipment, which are detrimental to environment and limit their applications in micro‐devices. Herein, an equipment‐free method is reported to directly transform fluorinated monomer micro‐droplets into hydrophobic polymer particles on flat substrate surfaces in water, simultaneously depositing hydrophobic coatings with tunable surface structures. The as‐prepared surfaces show superior superhydrophobicity and great stability in extreme conditions (e.g., varying acidity, basicity, and heating conditions), and excellent anti‐fouling property. Meanwhile, surface hydrophobicity can be manipulated by adjusting emulsion droplet number density and reaction time. Hence, superhydrophobic surfaces with tunable hydrophobicity gradients have been successfully fabricated in one pot. This study provides an equipment‐free method to facilely fabricate controllable superhydrophobic surfaces, with great potential in the development of smart superhydrophobic materials in various engineering and industrial applications.
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献