Advanced Composite Solid Electrolyte Architecture Constructed with Amino‐Modified Cellulose and Carbon Nitride via Biosynthetic Avenue

Author:

Yin Sha1,Huang Yang1,Liu Yihong1,Cheng Long1,Chen Ming1,Xu Yifan1,Seidi Farzad1,Xiao Huining2ORCID

Affiliation:

1. International Innovation Center for Forest Chemicals & Materials and Jiangsu Co‐Innovation Center of Efficient Processing & Utilization of Forest Resources Nanjing Forestry University Nanjing 210037 China

2. Department of Chemical Engineering University of New Brunswick Fredericton NB E3B 5A3 Canada

Abstract

AbstractPolyethylene oxide (PEO) solid electrolytes are regarded as a promising candidate for all‐solid‐state lithium batteries owing to their high safety and interfacial compatibility. However, PEO electrolyte is plagued by relatively weak structural strength and unsatisfactory Li+ conductivity. Herein, a mechanically strong and Li+ conductively favorable cellulosic scaffold of PEO is fabricated through amino (‐NH2) modification and g‐C3N4 (CN) incorporation of bacterial cellulose (BC) under a microbial circumstance. The biologically ‐NH2 modified BC (B‐NBC) is entangled with CN nanosheets (CN@B‐NBC) through an in situ secretion of nanocellulose followed by hydrogen bond‐induced self‐assembly. The ‐NH2 groups from B‐NBC weaken the complexation of Li+ with its counterpart, thus facilitating the release of more free Li+. CN with strong C‐N covalence and extra lone electrons of N further strengthens the BC skeleton and meanwhile offers sufficient anchors for Li+ migration. After infiltrating by LiTFSI/PEO (LP), the LP/CN@B‐NBC composite solid electrolyte (CSE) exhibits high lithium transference number and ionic conductivity. Upon coupling with LiFePO4 cathode, the full battery exhibits a remarkably high specific capacity, superior rate capability, and decent cycling stability. This work pioneers the attempts of chemical decoration and ingredient incorporation of BC architecture in CSE with the aid of a bottom‐up biosynthetic avenue.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3