Self‐Floating Polymer Microreactor for High‐Efficiency Synergistic CO2 Photoreduction and Antibiotic Degradation in One Photoredox Cycle

Author:

Wang Mengmeng1,Zhang Yingxue1,Dong Shihong2,Li Najun1,Xu Qingfeng1,Li Hua1,Lu Jianmei1,Chen Dongyun1ORCID

Affiliation:

1. Collaborative Innovation Center of Suzhou Nano Science and Technology College of Chemistry Chemical Engineering and Materials Science Soochow University 199 Ren'ai Road Suzhou 215123 P. R. China

2. Suzhou Shijing Technology Co., Ltd 58 Jinrui Road Suzhou 215137 P. R. China

Abstract

AbstractConstructing a novel photocatalyst to realize both pollutant oxidation and evolved CO2 reduction in one photoredox cycle can significantly reframe the role of pollutant management. Here, self‐floating poly(bismaleimide‐co‐divinylbenzene) porous microspheres (PBMs) are filled with ZnSnO3 quantum dots (ZSO QDs) to construct a polymer composite microreactor with an S‐scheme heterojunction (ZSO QDs/AP‐PBMs). This microreactor realizes efficient catalytic oxidation and degradation of antibiotic pollutants under light, and the CO2 generated in this process is reduced to high value‐added CO, allowing for the direct conversion of pollutants to a resource in one photoredox cycle. The high specific surface area of the PBMs enables the rapid and efficient adsorption of levofloxacin (LVX), and the self‐floating porous design effectively solves the problem of CO2 adsorption and mass transfer in the gas–liquid–solid three‐phase system, while the S‐scheme heterostructure enhances charge carrier separation. As a result, ZSO QDs/AP‐PBMs achieves complete degradation of LVX in one redox cycle with 100% selectivity to produce 100.3 µmol g−1 CO, and further draw a conclusion that fluoroquinones antibiotics as excellent electron donors can significantly enhance co‐catalytic effect with CO2, which is not previously reported. Theoretical calculations and characterization experiments provide information on S‐scheme heterojunction transfer mechanism and possible degradation pathways, allowing for the rational design of photoredox bifunctional catalysts.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3