DNA Hydrogels as Functional Materials and Their Biomedical Applications

Author:

Ma Yinzhou12,Duan Xiaocen1,Huang Jianyong1ORCID

Affiliation:

1. Department of Mechanics and Engineering Science College of Engineering Peking University Beijing 100871 China

2. Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China

Abstract

AbstractWith the remarkable development of DNA nanotechnology, interest in DNA molecules has expanded beyond its biological role to building blocks in materials science. As a unique branch of DNA‐based materials, DNA hydrogels have exhibited many fascinating characteristics, including broad biocompatibility, precise programmability, convenient modification, and tunable mechanical properties, which make DNA hydrogels ideal biomaterials. Moreover, by combining with functional nucleic acids, such as aptamers, i‐motif nanostructures, CpG oligodeoxynucleotides, and DNAzymes, DNA hydrogels can be further tailored to provide additional target recognition, therapeutic potential, and catalytic activities, allowing them to play important roles in biosensing and medical applications. This review, aims to provide readers with an up‐to‐date overview of the important developments of biomedical DNA hydrogels. First, it introduces different synthetic strategies of hydrogels that utilize DNA as building materials and functional units within the hydrogel networks and discuss their advantages in biomedical applications. Subsequently, new approaches and applications of biomedical DNA hydrogels in the recent years are highlighted, such as therapeutic systems, cell culture platforms, tissue engineering materials, and biosensors. Finally, future perspectives and remaining challenges of DNA hydrogels in biomedicine are presented.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3