Vacancy‐Rich Ternary Iron Phosphoselenide Multicavity Nanorods: A Highly Reversible and Fast Anode for Sodium‐Ion Batteries

Author:

Tian Zhidong123ORCID,Sun Wei13,Yu Jiaqi1,Yuan Jun1,Chen Junxiang1,Liu Yangjie1,Ding Yichun13,Hu Xiang1,Wen Zhenhai13ORCID

Affiliation:

1. CAS Key Laboratory of Design and Assembly of Functional Nanostructures Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China

2. College of Chemistry and Materials Science Fujian Normal University Fuzhou 350007 China

3. Fujian College University of Chinese Academy of Sciences Fuzhou Fujian 350002 China

Abstract

AbstractThe significance of exploring optimal electrode materials cannot be overstated, particularly in mitigating the critical issues posed by sluggish redox kinetics, significant volume variations, and severe structural collapse resulting from the insertion and extraction of sodium ions. These efforts are crucial for enhancing the longevity and rapid charging capabilities of sodium‐ion batteries (SIBs). Herein, a defect engineering strategy for the in situ encapsulation of single‐phase ternary iron phosphoselenide into porous carbon by robust chemical bonds with the formation of rod‐like multicavity nanohybrids (FePSe3@C) is presented. The incorporation of Se atom not only modulates the electronic structure of the central metal Fe atom and enhances the intrinsic electrical conductivity, but also generates numerous additional reaction sites and accelerates the reaction kinetics of FePSe3@C, as corroborated by theoretical calculations and kinetic analysis. Notably, the FePSe3@C demonstrates an outstanding rate capability of 321.7 mAh g−1 even at 20 A g−1 and long cycling stability over 1000 cycles. The sodium‐ion full cell, pairing the FePSe3@C anode with the Na3V2(PO4)3@C cathode, exhibits a remarkable energy density of 202 Wh kg−1, demonstrating its practical applicability. This work provides a controllable defect and morphology engineering strategy to construct advanced materials with fast charge transfer for high‐power/energy SIBs.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3