Integrated Electromechanical Structure for Iontronic Pressure Sensors with Linear High‐Sensitivity Response and Robust Sensing Stability

Author:

Zhu Bolin1,Guo Junwei1,Li Wendong2,Luo Tian1,Lei Fan3,Li Guangxian1,Yang Junlong1ORCID

Affiliation:

1. College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering of China Sichuan University Chengdu Sichuan 610065 China

2. School of Aeronautics and Astronautics State Key Laboratory of Polymer Materials Engineering of China Robotic Satellite Key Laboratory of Sichuan Province Sichuan University Chengdu Sichuan 610065 China

3. School of Mechanical Engineering Chengdu University Chengdu Sichuan 610106 China

Abstract

AbstractA linear high‐sensitivity response is crucial for flexible electronic skin, particularly in precision detection for applications like intelligent robotics and human‐machine interactions. Prevailing strategies typically adopt a layered, multifaceted material design to cultivate this response, yet this approach often culminates in a diminished capacity to augment sensing stability. The root causes of these limitations are predominantly material mechanical mismatches and interface incompatibilities inherent in these designs. To address these challenges, an electromechanical integration strategy is introduced that simultaneously enhances linear highsensitivity and stability. This strategy is centered on constructing a robust, integrated mechanical and electrical interface within a polyurethane material system through an in situ growth and adhesion process. The iontronic pressure sensor exhibits a linear high‐sensitivity response (16.24 kPa−1, R2 = 0.999) within a wide range (0–300 kPa). Moreover, the sensor's integrated structure, self‐encapsulated through the adhesion between the electrode and dielectric layers, exhibits robust stability, even under complex mechanical stresses. The applications of the sensors in precision weighing and haptic feedback within intelligent gripping systems demonstrate their advantages of both linearity and stable sensing. This work delineates a strategic pathway for the fabrication of high‐performance flexible pressure sensors, contributing significantly to the field of advanced sensing technologies.

Funder

National Natural Science Foundation of China

National Basic Research Program of China

State Key Laboratory of Polymer Materials Engineering

Publisher

Wiley

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3