Na2.5VTi0.5Al0.5(PO4)3 as Long Lifespan Cathode for Fast Charging Sodium‐Ion Batteries

Author:

Li Zechen1,Sun Chen1,Li Meng1,Wang Xiaoyang1,Li Yang1,Yuan Xuanyi2,Jin Haibo1,Zhao Yongjie1ORCID

Affiliation:

1. Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China

2. Beijing Key Laboratory of Opto‐Electronic Functional Materials & Micro‐Nano Devices Department of Physics Renmin University of China Beijing 100872 P. R. China

Abstract

AbstractVanadium based NASICON‐type cathodes are faced with the exorbitant cost and underdeveloped multi‐electrons reaction of V species. In this work, a strategy of increased covalency of the NASICON framework combined with the reversible activation of V4+/V5+ couple is proposed to improve the electrochemical performance together with energy density of V‐based cathodes. Making full use of V2+/V3+/V4+/V5+ and Ti3+/Ti4+ redox couples, Na2.5VTi0.5Al0.5(PO4)3 exhibits admirable electrochemical performance, including a high specific capacity of 160.9 mAh g−1 at 0.1 C and favorable cycling stability (a capacity retention of 88.3% at 20 C after 1000 cycles). Moreover, this cathode displays outstanding low temperature performance at 0 °C with a capacity retention of 89% after 1200 cycles at 5 C. In situ XRD and EIS analysis are conducted to reveal the Na+ storage mechanism. The cathode reveals a lattice volume variation of 2.16% upon cycling, which is responsible for the high structural stability during the extraction and intercalation process of Na+. Applying Na2.5VTi0.5Al0.5(PO4)3 as both cathode and anode electrode, the symmetric cell is assembled and displays exceptional capacity of 59.8 mAh g−1 at 20 C. The research provides an effective routine to stimulate the electrochemical potential of V‐based electrode materials.

Funder

Songshan Lake Materials Laboratory

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3