Affiliation:
1. Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 P. R. China
2. Beijing Key Laboratory of Opto‐Electronic Functional Materials & Micro‐Nano Devices Department of Physics Renmin University of China Beijing 100872 P. R. China
Abstract
AbstractVanadium based NASICON‐type cathodes are faced with the exorbitant cost and underdeveloped multi‐electrons reaction of V species. In this work, a strategy of increased covalency of the NASICON framework combined with the reversible activation of V4+/V5+ couple is proposed to improve the electrochemical performance together with energy density of V‐based cathodes. Making full use of V2+/V3+/V4+/V5+ and Ti3+/Ti4+ redox couples, Na2.5VTi0.5Al0.5(PO4)3 exhibits admirable electrochemical performance, including a high specific capacity of 160.9 mAh g−1 at 0.1 C and favorable cycling stability (a capacity retention of 88.3% at 20 C after 1000 cycles). Moreover, this cathode displays outstanding low temperature performance at 0 °C with a capacity retention of 89% after 1200 cycles at 5 C. In situ XRD and EIS analysis are conducted to reveal the Na+ storage mechanism. The cathode reveals a lattice volume variation of 2.16% upon cycling, which is responsible for the high structural stability during the extraction and intercalation process of Na+. Applying Na2.5VTi0.5Al0.5(PO4)3 as both cathode and anode electrode, the symmetric cell is assembled and displays exceptional capacity of 59.8 mAh g−1 at 20 C. The research provides an effective routine to stimulate the electrochemical potential of V‐based electrode materials.
Funder
Songshan Lake Materials Laboratory
National Natural Science Foundation of China
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献