Modulation Doping Leads to Optimized Thermoelectric Properties in n‐Type Bi6Cu2Se4O6 due to Interface Effects

Author:

Zheng Junqing1ORCID,Wang Siqi1,Zhao Zhe1,Gao Xiang2,Hong Tao1,Zhao Li‐Dong1ORCID

Affiliation:

1. School of Materials Science and Engineering Beihang University Beijing 100191 China

2. Center for High Pressure Science and Technology Advanced Research (HPSTAR) Beijing 100094 China

Abstract

AbstractHeterogeneous composites consisting of Bi6Cu2Se3.6Cl0.4O6 and Bi2O2Se are prepared according to the concept of modulation doping. With prominently increased carrier mobility and almost unchanged effective mass, the electrical transport properties are considerably optimized resulting in a peak power factor ≈1.8 µW cm−1 K−2 at 873 K, although the carrier concentration is slightly deteriorated. Meanwhile, the lattice thermal conductivity is lowered to ≈0.62 W m−1 K−1 due to the introduction of the second phase. The modified Self‐consistent Effective Medium Theory is utilized to explain the deeper mechanism of modulation doping. The enhancement of apparent carrier mobility is derived from the highly active phase interfaces as fast carrier transport channels, while the reduced apparent thermal conductivity is ascribed to the existence of thermal resistance at the phase interfaces. Ultimately, an optimized ZT ≈0.23 is obtained at 873 K in Bi6Cu2Se3.6Cl0.4O6 + 13% Bi2O2Se. This research demonstrates the effectiveness of modulation doping for optimizing thermoelectric properties once again, and provides the direct microstructure observation and consistent theoretical model calculation to emphasize the role of interface effects in modulation doping, which should be probably applicable to other thermoelectrics.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Beijing Municipality

Higher Education Discipline Innovation Project

National Science Fund for Distinguished Young Scholars

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3