Ultrafast High‐Volumetric Sodium‐Ion Capacitors Based on Compact Nanoarchitectured Carbon Electrodes

Author:

Fang Yan1,Li Li2,Li Jinghan1,Gan Yang3,Du Jie1,Li Jiaxin1,Chen Xin1,Pan Hui1,Zhang Wang1,Gu Jiajun1,Zhang Di1,Liu Qinglei1ORCID

Affiliation:

1. State Key Laboratory of Metal Matrix Composites School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai 200240 China

2. Hefei National Research Center for Physical Sciences at Microscale CAS Centre for Excellence in Nanoscience University of Science and Technology of China Hefei 230026 China

3. Department of Materials Science & Institute of Optoelectronics Fudan University Shanghai 200438 China

Abstract

AbstractUltrafast carbon electrodes with high‐volumetric capacities are crucial for the fast‐developing sodium‐ion capacitors (SICs) but have rarely been achieved due to the negative correlation between electrode density and ion transport kinetics. Here, a top‐down strategy to achieve a compact carbon architecture with topological ion transport/diffusion pathways to address this obstacle is reported. The resulting freestanding carbon electrode exhibits a notable volumetric capacity of 242 mAh cm−3 at 0.05 A g−1 and unprecedented high‐rate capability of 107 mAh cm−3 at 50 A g−1. It achieves an optimal balance between energy density (60.2 Wh L−1) and power density (12859 W L−1) in a SIC device. The ultrafast and high‐volumetric performance is attributed to the synergistic effect of architecture‐enhanced rapid ion transport/diffusion and carbon nanostructure‐driven fast Na+ storage mechanisms involving adsorption/desorption, surface‐redox and solvated Na+ co‐intercalation reactions. The nanoarchitectured carbon electrodes show greatly improved Na+ diffusion coefficients throughout the potential range, resulting in an extremely short characteristic time (0.013 s) for fast Na+ storage.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3