Degradable and Biocompatible Magnesium Zinc Structures for Nanomedicine: Magnetically Actuated Liposome Microcarriers with Tunable Release

Author:

Peter Florian12ORCID,Kadiri Vincent Mauricio3ORCID,Goyal Rahul1,Hurst José4,Schnichels Sven4,Avital Aviram56,Sela Mor5,Mora‐Raimundo Patricia5,Schroeder Avi5ORCID,Alarcón‐Correa Mariana12ORCID,Fischer Peer12ORCID

Affiliation:

1. Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany

2. Institute for Molecular Systems Engineering and Advanced Materials Heidelberg University Im Neuenheimer Feld 225 69120 Heidelberg Germany

3. Max‐Planck‐Institute for Intelligent Systems Heisenbergstraße 3 70569 Stuttgart Germany

4. Center of Ophthalmology University Eye Hospital Elfriede‐Aulhorn‐Straße 7 72076 Tübingen Germany

5. The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel

6. The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology Technion – Israel Institute of Technology Haifa 32000 Israel

Abstract

AbstractInorganic therapeutic carriers and implants should not only be biocompatible, but should also degrade under physiological conditions. Ideally, the time of the degradation can be controlled, and ideally the degradation products are fully biocompatible and metabolized by the body. This proves a challenge for carriers used in nanomedicine, including microswimmers and nanorobotic systems destined for targeted delivery, as these generally require inorganic materials to enable coupling to external fields. Taking inspiration from macroscopic orthopedic implants that are made from magnesium (Mg) and zinc (Zn) and that are fully biocompatible and degradable, the growth of complex microstructures is demonstrated, including micropropellers, containing Mg and Zn. By varying the content of Mg, the corrosion time of the microstructures can be tuned from hours to over a month. Incorporation of biocompatible hard‐magnetic iron (Fe)‐platinum (Pt) permits the controlled motion of the micropropellers. The surface of the MgZn structures can be functionalized with liposomes, rendering the structures microcarriers that allow for a time‐dependent release of their cargo as a results of their degradation in aqueous environments. This suggests a powerful platform for targeted drug or gene delivery, that can be integrated with established systems for magnetic actuation and transfection.

Funder

Teva Pharmaceutical Industries

Bundesministerium für Bildung und Forschung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3