Thermoelectric and Photoelectric Dual Modulated Sensors for Human Internet of Things Application in Accurate Fire Recognition and Warning

Author:

Li Gang1,Hu Yue1,Chen Jihao2,Liang Lirong1,Liu Zhuoxin1,Fu Jia1,Du Chunyu1ORCID,Chen Guangming1ORCID

Affiliation:

1. College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China

2. School of Public Administration North China University of Water Resources and Electric Power Zhengzhou 450046 P. R. China

Abstract

AbstractThe emergence of the Internet of Things (IoT) era has necessitated the development of intelligent wearable electronics for fire warning to mitigate fire hazards prior to ignition. Although significant advancements are achieved in thermoelectric materials and devices, the design of a specific thermoelectric wearable device for precision fire warning still remains challenging. In this study, an intelligent sensing system for human IoT fire warning that utilizes a novel light/heat dual‐parameter‐responsive single‐walled carbon nanotube/poly(3‐hexylthiophene‐2,5‐diyl) (SWCNT/P3HT) composite is developed. This system comprises the composite, a circuit microcontroller, and a message transmission system, which together create an intelligent fire source sensing device. The synergistic effect of light and heat is observed to enhance the output voltage and response time under concurrent stimuli, as compared to heating alone. The intelligent sensing system is found to effectively identify and alarm for fire sources, owing to the high thermoelectric and photoelectric performance of the SWCNT/P3HT composite, precise fire recognition, and the ability to adjust the alarming threshold for detecting fire hazards. This study presents a new approach for designing light/heat dual‐parameter‐responsive materials and wearable devices, which hold potential applications in smart home living environments, including child protection against fire hazards.

Funder

Shenzhen Fundamental Research Program

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3