Enhancing the Thermoelectric Properties via Modulation of Defects in P‐Type MNiSn‐Based (M = Hf, Zr, Ti) Half‐Heusler Materials

Author:

Ai Xin12,Lei Binghua3,Cichocka Magdalena O.1,Giebeler Lars1,Villoro Ruben Bueno4,Zhang Siyuan4,Scheu Christina4,Pérez Nicolás1,Zhang Qihao1,Sotnikov Andrei1,Singh David J.3,Nielsch Kornelius125,He Ran1ORCID

Affiliation:

1. Leibniz Institute for Solid State and Materials Research Dresden e.V. (IFW‐Dresden) 01069 Dresden Germany

2. Institute of Materials Science TUD Dresden University of Technology 01062 Dresden Germany

3. Department of Physics and Astronomy University of Missouri Columbia MO 65211 USA

4. Max‐Planck‐Institut für Eisenforschung GmbH 40237 Düsseldorf Germany

5. Institute of Applied Physics TUD Dresden University of Technology 01062 Dresden Germany

Abstract

AbstractThe thermoelectric figure‐of‐merit (zT) of p‐type MNiSn (M = Ti, Zr, or Hf) half‐Heusler compounds is lower than their n‐type counterparts due to the presence of a donor in‐gap state caused by Ni occupying tetrahedral interstitials. While ZrNiSn and TiNiSn, have been extensively studied, HfNiSn remains unexplored. Herein, this study reports an improved thermoelectric property in p‐type HfNi1−xCoxSn. By doping 5 at% Co at the Ni sites, the Seebeck coefficient becomes reaching a peak value exceeding 200 µV K−1 that breaks the record of previous reports. A maximum power factor of ≈2.2 mW m−1 K−2 at 973 K is achieved by optimizing the carrier concentration. The enhanced p‐type transport is ascribed to the reduced content of Ni defects, supported by first principle calculations and diffraction pattern refinement. Concomitantly, Co doping also softens the lattice and scatters phonons, resulting in a minimum lattice thermal conductivity of ≈1.8 W m−1 K−1. This leads to a peak zT of 0.55 at 973 K is realized, surpassing the best performing p‐type MNiSn by 100%. This approach offers a new method to manipulate the intrinsic atomic disorder in half‐Heusler materials, facilitating further optimization of their electronic and thermal properties.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3